Exercise 9.6.3

Solve the wave equation, Eq. (9.89), subject to the indicated conditions.
Determine $\psi(x, t)$ given that at $t=0 \psi_{0}(x)$ is a single square-wave pulse as defined below, and the initial time derivative of ψ is zero.

$$
\psi_{0}(x)=0,|x|>a / 2, \quad \psi_{0}(x)=1 / a,|x|<a / 2 .
$$

Solution

The initial value problem to solve is as follows.

$$
\begin{aligned}
& \psi_{t t}=c^{2} \psi_{x x}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& \psi(x, 0)=\psi_{0}(x)= \begin{cases}\frac{1}{a} & |x|<\frac{a}{2} \\
0 & |x|>\frac{a}{2}\end{cases} \\
& \psi_{t}(x, 0)=0
\end{aligned}
$$

Since the wave equation is over the whole line ($-\infty<x<\infty$), it can be solved by operator factorization. Bring $c^{2} \psi_{x x}$ to the left side.

$$
\frac{\partial^{2} \psi}{\partial t^{2}}-c^{2} \frac{\partial^{2} \psi}{\partial x^{2}}=0
$$

Factor the operator.

$$
\begin{gathered}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi=0 \\
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) \psi=0 \\
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial \psi}{\partial t}-c \frac{\partial \psi}{\partial x}\right)=0
\end{gathered}
$$

Let u be the quantity in the second set of parentheses.

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0 \\
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
\end{gathered}
$$

As a result of factoring the operator, the wave equation has reduced to a system of first-order PDEs.

$$
\left.\begin{array}{l}
\frac{\partial \psi}{\partial t}-c \frac{\partial \psi}{\partial x}=u \\
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
\end{array}\right\}
$$

The differential of a function of two variables $h=h(x, t)$ is defined as

$$
d h=\frac{\partial h}{\partial t} d t+\frac{\partial h}{\partial x} d x .
$$

Divide both sides by $d t$ to obtain the fundamental relationship between the total derivative of h and the partial derivatives of h.

$$
\frac{d h}{d t}=\frac{\partial h}{\partial t}+\frac{d x}{d t} \frac{\partial h}{\partial x}
$$

In light of this, the PDE for u reduces to the ODE,

$$
\begin{equation*}
\frac{d u}{d t}=0, \tag{1}
\end{equation*}
$$

along the characteristic curves in the $x t$-plane that satisfy

$$
\begin{equation*}
\frac{d x}{d t}=c, \quad x(\xi, 0)=\xi \tag{2}
\end{equation*}
$$

where ξ is a characteristic coordinate. Integrate both sides of equation (2) with respect to t to solve for $x(\xi, t)$.

$$
x=c t+\xi
$$

Now integrate both sides of equation (1) with respect to t.

$$
u(x, \xi)=f(\xi)
$$

f is an arbitrary function of the characteristic coordinate ξ. Eliminate ξ in favor of x and t.

$$
u(x, t)=f(x-c t)
$$

Consequently, the PDE for ψ becomes

$$
\frac{\partial \psi}{\partial t}-c \frac{\partial \psi}{\partial x}=f(x-c t)
$$

It reduces to

$$
\begin{equation*}
\frac{d \psi}{d t}=f(x-c t) \tag{3}
\end{equation*}
$$

along the characteristic curves in the $x t$-plane that satisfy

$$
\begin{equation*}
\frac{d x}{d t}=-c, \quad x(\eta, 0)=\eta, \tag{4}
\end{equation*}
$$

where η is another characteristic coordinate. Integrate both sides of equation (4) with respect to t to solve for $x(\eta, t)$.

$$
x=-c t+\eta
$$

Now integrate both sides of equation (3) with respect to t.

$$
\psi(x, \eta)=\int^{t} f(x-c s) d s+G(\eta)
$$

G is an arbitrary function of the characteristic coordinate η. Make the substitution $r=x-c s$ in the integral.

$$
\begin{aligned}
\psi(x, \eta) & =\int^{x-c t} f(r)\left(-\frac{d r}{c}\right)+G(\eta) \\
& =F(x-c t)+G(\eta)
\end{aligned}
$$

F is the integral of $-f / c$, another arbitrary function. Therefore, since $\eta=x+c t$,

$$
\psi(x, t)=F(x-c t)+G(x+c t) .
$$

This is the general solution of the wave equation. Now apply the initial conditions to determine F and G.

$$
\begin{aligned}
\psi(x, 0) & =F(x)+G(x)=\psi_{0}(x) \\
\psi_{t}(x, 0) & =-c F^{\prime}(x)+c G^{\prime}(x)=0
\end{aligned}
$$

Differentiate both sides of the first equation with respect to x and multiply both sides of it by c.

$$
\begin{aligned}
c F^{\prime}(x)+c G^{\prime}(x) & =c \psi_{0}^{\prime}(x) \\
-c F^{\prime}(x)+c G^{\prime}(x) & =0
\end{aligned}
$$

Add both sides of each equation to eliminate F^{\prime}.

$$
2 c G^{\prime}(x)=c \psi_{0}^{\prime}(x)
$$

Divide both sides by $2 c$.

$$
G^{\prime}(x)=\frac{1}{2} \psi_{0}^{\prime}(x)
$$

Integrate both sides with respect to x, setting the constant of integration to zero.

$$
G(x)=\frac{1}{2} \psi_{0}(x)
$$

So then

$$
F(x)+G(x)=\psi_{0}(x) \quad \rightarrow \quad F(x)+\frac{1}{2} \psi_{0}(x)=\psi_{0}(x) \quad \rightarrow \quad F(x)=\frac{1}{2} \psi_{0}(x) .
$$

What we have actually solved for are $F(w)$ and $G(w)$, where w is any expression we choose.

$$
\begin{aligned}
& F(x-c t)=\frac{1}{2} \psi_{0}(x-c t) \\
& G(x+c t)=\frac{1}{2} \psi_{0}(x+c t)
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\psi(x, t) & =F(x-c t)+G(x+c t) \\
& =\frac{1}{2} \psi_{0}(x-c t)+\frac{1}{2} \psi_{0}(x+c t) \\
& =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] .
\end{aligned}
$$

Note that

$$
\psi_{0}(x-c t)=\left\{\begin{array}{ll}
\frac{1}{a} & |x-c t|<\frac{a}{2} \\
0 & |x-c t|>\frac{a}{2}
\end{array}= \begin{cases}\frac{1}{a} & -\frac{a}{2}<x-c t<\frac{a}{2} \\
0 & x-c t<-\frac{a}{2} \\
0 & x-c t>\frac{a}{2}\end{cases}\right.
$$

and

$$
\psi_{0}(x+c t)=\left\{\begin{array}{ll}
\frac{1}{a} & |x+c t|<\frac{a}{2} \\
0 & |x+c t|>\frac{a}{2}
\end{array}=\left\{\begin{array}{ll}
\frac{1}{a} & -\frac{a}{2}<x+c t<\frac{a}{2} \\
0 & x+c t<-\frac{a}{2} \\
0 & x+c t>\frac{a}{2}
\end{array} .\right.\right.
$$

Depending what region in the $x t$-plane the point (x, t) is chosen, $\psi(x, t)$ will be different. These regions are obtained by drawing characteristic lines with slopes $\pm c$ through $\left(-\frac{a}{2}, 0\right)$ and $\left(\frac{a}{2}, 0\right)$, the boundaries of where the initial condition is nonzero.

Region I

Suppose the point (x, t) is chosen in region I.

In this case $x-c t<-\frac{a}{2}$ and $x+c t>\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}(0+0) \\
& =0 .
\end{aligned}
$$

This formula is valid for $|x|<c t-\frac{a}{2}$.

Region II

Suppose the point (x, t) is chosen in region II.

In this case $x-c t<-\frac{a}{2}$ and $-\frac{a}{2}<x+c t<\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}\left(0+\frac{1}{a}\right) \\
& =\frac{1}{2 a} .
\end{aligned}
$$

This formula is valid for $\left|\frac{a}{2}-c t\right|<-x<\frac{a}{2}+c t$.

Region III

Suppose the point (x, t) is chosen in region III.

In this case $-\frac{a}{2}<x-c t<\frac{a}{2}$ and $x+c t>\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}\left(\frac{1}{a}+0\right) \\
& =\frac{1}{2 a} .
\end{aligned}
$$

This formula is valid for $\left|\frac{a}{2}-c t\right|<x<\frac{a}{2}+c t$.

Region IV

Suppose the point (x, t) is chosen in region IV.

In this case $x-c t<-\frac{a}{2}$ and $x+c t<-\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}(0+0) \\
& =0 .
\end{aligned}
$$

This formula is valid for $-x>\frac{a}{2}+c|t|$.

Region V

Suppose the point (x, t) is chosen in region V .

In this case $-\frac{a}{2}<x-c t<\frac{a}{2}$ and $-\frac{a}{2}<x+c t<\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}\left(\frac{1}{a}+\frac{1}{a}\right) \\
& =\frac{1}{a} .
\end{aligned}
$$

This formula is valid for $|x|<\frac{a}{2}-c|t|$.

Region VI

Suppose the point (x, t) is chosen in region VI.

In this case $x-c t>\frac{a}{2}$ and $x+c t>\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}(0+0) \\
& =0 .
\end{aligned}
$$

This formula is valid for $x>\frac{a}{2}+c|t|$.

Region VII

Suppose the point (x, t) is chosen in region VII.

In this case $-\frac{a}{2}<x-c t<\frac{a}{2}$ and $x+c t<-\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}\left(\frac{1}{a}+0\right) \\
& =\frac{1}{2 a} .
\end{aligned}
$$

This formula is valid for $\left|\frac{a}{2}+c t\right|<-x<\frac{a}{2}-c t$.

Region VIII

Suppose the point (x, t) is chosen in region VIII.

In this case $x-c t>\frac{a}{2}$ and $-\frac{a}{2}<x+c t<\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}\left(0+\frac{1}{a}\right) \\
& =\frac{1}{2 a} .
\end{aligned}
$$

This formula is valid for $\left|\frac{a}{2}+c t\right|<x<\frac{a}{2}-c t$.

Region IX

Suppose the point (x, t) is chosen in region IX.

In this case $x-c t>\frac{a}{2}$ and $x+c t<-\frac{a}{2}$, so

$$
\begin{aligned}
\psi(x, t) & =\frac{1}{2}\left[\psi_{0}(x-c t)+\psi_{0}(x+c t)\right] \\
& =\frac{1}{2}(0+0) \\
& =0 .
\end{aligned}
$$

This formula is valid for $|x|<-c t-\frac{a}{2}$.
Some of the formulas we found can be combined by forming unions of the regions and using absolute value signs. The union of regions I and IX, for example, results in the following formula for $\psi(x, t)$.

$$
\psi(x, t)=0 \quad \text { if }|x|<c|t|-\frac{a}{2}
$$

The union of regions IV and VI results in the following formula for $\psi(x, t)$.

$$
\psi(x, t)=0 \quad \text { if }|x|>\frac{a}{2}+c|t|
$$

The union of regions II, III, VII, and VIII results in the following formula for $\psi(x, t)$.

$$
\psi(x, t)=\frac{1}{2 a} \quad \text { if }\left|\frac{a}{2}-c\right| t\left|\left|<|x|<\frac{a}{2}+c\right| t\right|
$$

Therefore,

$$
\psi(x, t)=\left\{\begin{array}{ll}
\frac{1}{a} & \text { if }|x|<\frac{a}{2}-c|t| \\
0 & \text { if }|x|<c|t|-\frac{a}{2} \\
0 & \text { if }|x|>\frac{a}{2}+c|t| \\
\frac{1}{2 a} & \text { if }\left|\frac{a}{2}-c\right| t| |<|x|<\frac{a}{2}+c|t|
\end{array} .\right.
$$

The solution in each part of the $x t$-plane is labelled by color.

